博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
第四章 微分中值定理及导数的应用
阅读量:6098 次
发布时间:2019-06-20

本文共 617 字,大约阅读时间需要 2 分钟。

一、罗尔定理

1、几何意义
2、证明,闭区间可取得极值,最大值点处导数存在,左导数等于右导数,证明该点出导数只能等于零

二、拉格朗日定理

1、几何意义
2、证明,作原函数与平行于曲线弦的一条直线的差,其端点值相等,则根据罗尔定理可证明
3、拉格朗日定理的其他形式
4、拉格朗日定理是罗尔定理的扩展
5、任意点处的拉格朗日定理
6、拉格朗日的有限增量公式
7、利用拉格朗日定理证明不等式

三、柯西定理

1、意义
2、证明
3、柯西定理是拉格朗日定理的扩展

四、泰勒公式

1、意义
2、证明,应用柯西定理
3、公式的几种形式
4、应用公式求近似值并估计误差
5、泰勒公式是n阶的拉格朗日定理

五、洛必达法则

1、未定型
2、柯西定理证明
3、作用于极限求解

六、函数的增减性与极值

1、单调性与导数正负的关系,即单调性的充分必要条件
2、函数的极值及求法;导数与极值的关系
3、极值的充分条件
4、函数的最值
5、唯一驻点的最值特征
6、最值证明不等式

七、函数的凹凸性、拐点

1、曲线凹凸的定义(切线定义法、函数值定义法)
2、凹凸性的判定
3、曲线的渐近线,定理和推导过程
4、画图

八、曲率

1、光滑曲线,一阶导数连续,即曲线切线连续转动
2、有向光滑曲线的度量
3、弧微分
4、参量方程的弧微分表达式
5、单位弧长上的切线转角增量(即斜率增量)
6、平均曲率与某点的曲率
7、曲线点处曲率,是该点处切线倾斜角的微分比上该点的弧微分

转载地址:http://rfbza.baihongyu.com/

你可能感兴趣的文章
(二)Spring Boot 起步入门(翻译自Spring Boot官方教程文档)1.5.9.RELEASE
查看>>
Android Annotation扫盲笔记
查看>>
React 整洁代码最佳实践
查看>>
聊聊架构设计做些什么来谈如何成为架构师
查看>>
Java并发编程73道面试题及答案
查看>>
iOS知识小集·设置userAgent的那件小事
查看>>
移动端架构的几点思考
查看>>
Tomcat与Spring中的事件机制详解
查看>>
Spark综合使用及用户行为案例区域内热门商品统计分析实战-Spark商业应用实战...
查看>>
初学者自学前端须知
查看>>
Retrofit 源码剖析-深入
查看>>
企业级负载平衡简介(转)
查看>>
ICCV2017 论文浏览记录
查看>>
科技巨头的交通争夺战
查看>>
当中兴安卓手机遇上农行音频通用K宝 -- 卡在“正在通讯”,一直加载中
查看>>
Shell基础之-正则表达式
查看>>
JavaScript异步之Generator、async、await
查看>>
讲讲吸顶效果与react-sticky
查看>>
c++面向对象的一些问题1 0
查看>>
直播视频流技术名词
查看>>